#### Welcome to our CHEM 4 lecture

- Go to <u>LearningCatalytics.com</u> Session ID =
- While we wait, please start on the review question below.

**Clicker question:** Review from last class

1) Calculate the formula mass of iron(III) hydrogen phosphate with the correct number of significant figures. [Be sure to use the periodic table from our website.]



# **Key to Success in CHEM 4**

- ✓ Visit our CHEM 4 website regularly: <u>tinyurl.com/SacStateChem4</u>
- ✓ Attend every lecture having completed the assigned reading.
- ✓ Review our PowerPoint slides and/or lecture recordings after each class.
- Keep up with daily homework. However, all students will automatically receive full credit for all late homework this semester.
- Complete all of the practice exams.
- ✓ Start formal studying for exams 1 week early.
- ✓ Talk to your Commit to Study peer mentor about how you are doing in CHEM 4.
- ✓ Get help when needed:
  - ✓ Put together a weekly study group.
  - ✓ Jeff's office hours: MWF 9 9:30 am and 11 11:30 am; and by appointment.
  - ✓ PAL office hours: link is on our CHEM 4 website.

## **CHEM 4 lecture**

Friday – October 9, 2020

Sec 2.4 cont.

Calculations with mixed +/- and x/÷

# **Background:** Determining answers for calculations with mixed $x/\div$ and +/-

#### **Reminders:**

3)

- Don't round off too early! Keep at least one extra sig fig for each step.
- Do math in parenthesis first.
- Complete the entire calculation and then go back and determine how many digits to keep.
- Be careful when switch from +/- (decimal points) to  $x/\div$  (sig figs)

**Example:** Perform the following calculation and report the answer with the correct number of digits.



### **Progress clicker question (covers material we are learning now)** Go to LearningCatalytics.com Session ID =

2) Report the answer to this calculation with the correct significant figures:

(0.2350)(10.35 - 3.564)

| A) -1.182                    | C) 1.594                                 | E) 1.59471                        | G) 1.60                        |  |
|------------------------------|------------------------------------------|-----------------------------------|--------------------------------|--|
| B) 1.59                      | D) 1.596                                 | F) 1.59565                        | H) 1.6 x 10 <sup>2</sup>       |  |
| <b>Answer:</b><br>(0.2350)(1 | $100^{ths} 	1000^{ths} 	0.35 - 3.564) =$ | <i>4sf 3sf</i><br>(0.2350)(6.786) | = 1.59471 = 1.59<br>(keep 3sf) |  |

- Use the decimal places here to determine how many of these digits are significant.
- Don't round off too early or get 1.60!

### **Progress clicker question (covers material we are learning now)** Go to LearningCatalytics.com Session ID =

3) Europium has two naturally occurring isotopes. The lighter isotope, Eu-151 has a mass of 150.92 amu and a 46.0% abundance. The other isotope, Eu-153, has a mass of 152.92 amu. Based on these values, what atomic mass, with correct significant figures, should be written on the periodic table for europium?



# Progress clicker question (covers material we are learning now)

Go to <u>LearningCatalytics.com</u> Session ID =

4) Report the answer to this calculation with the correct significant figures:



#### **Progress clicker question (covers material we are learning now)** Go to LearningCatalytics.com Session ID =

5) Report the answer to this calculation with the correct significant figures:

 $\left(\frac{75.0 \text{ m}}{605 \text{ s}}\right)$ + 2.096 m/sA) 2.21997 m/sC) 2.2199 m/sE) 2.220 m/sB) 2.2200 m/sD) 2.219 m/sF) 2.22 m/s

#### **Answer:**

